
COLOR IS NOT A METRIC SPACE 
Implications	
  for	
  Pattern	
  Recognition,	
  Machine	
  Learning,	
  and	
  Computer	
  Vision	
  

	
  
Thomas	
  Kinsman	
  1,	
  Mark	
  Fairchild	
  2,	
  Jeff	
  Pelz	
  3	
  

Multidisciplinary	
  Vision	
  Research	
  Labs,	
  Rochester	
  Institute	
  of	
  Technology,	
  Rochester,	
  NY	
  14623	
  
{1Thomas.Kinsman,3Jeff.Pelz}@gmail.com 

Associate	
  Dean,	
  College	
  of	
  Science,	
  Rochester	
  Institute	
  of	
  Technology,	
  Rochester,	
  NY	
  14623,	
  2	
  mdf@cis.rit.edu	
  
 
Abstract—Using a metric feature space for pattern recognition, 
data mining, and machine learning greatly simplifies the 
mathematics because distances are preserved under rotation and 
translation in feature space.  A metric space also provides a 
“ruler”, or absolute measure of how different two feature vectors 
are.  In the computer vision community color can easily be miss-
treated as a metric distance. This paper serves as an introduction 
to why using a non-metric space is a challenge, and provides 
details of why color is not a valid Euclidean distance metric. 
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I.  EXAMPLE NON-METRIC MEASUREMENT SPACE 
Color is often used as an appearance cue [19] for image or 

object clustering.[20] As a result it is easy to think of color as a 
metric space, which is not the case. Here we demonstrate the 
problem of using a non-metric space, and the extension to color 
measures. 

A. Non-commensurate axes 
Suppose that there are two surveillance suspects: Smith and 

Thomas. To tell them apart, we measure their features.  Smith 
is 6 feet tall, with 1 FPSI. Thomas is 5.5 feet tall, with 3 FPSI. 
When plotted in feature space, (Figure 1.) we can ask, “What is 
the difference between Smith and Thomas?”  It would be very 
easy to compute a “Euclidean” distance: 

D = (6! 5.5)2 + (3!1)2 = 2.06  
But, what are the units of this distance? The units here are 

intentionally vague. Whatever units FPSI are, they are not feet.  
Consequently, D cannot be in feet. D is not a metric distance. 

Furthermore, there is no understanding of the relative 
importance between the height measurement in feet, versus the 
skin complexion, in freckles per square inch [FPSI].  The only 
way for D to be a valid metric distance would be if both axes 
had the same units. 

Consider the consequence of changing units. If the units of 
height were changed to centimeters, the value of D would 
change to 15.4. Height would be more important than FPSI. If 
the height was in kilometers, the difference in heights becomes 
nearly zero, and the D would only reflect the difference in 
FPSI, or 2.0. The bias between any two dissimilar axes is 
inherent in the measurement units. 

B. Application to color 
Consider when one the units of the axes are changed to the 

amounts of green and red. The distance, D, still cannot have 
units associated with it. We can call it a color difference, but 

the distance is neither only a difference in red, nor only a 
difference in green. 
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Figure 1 – Suspects Smith (S) and Thomas (T) plotted on a 2D graph. 

The distance between two colors is a visual, perceptual, 
difference. Consider the red = green diagonal line on a pair of 
axes that are red versus green. One might say that the diagonal 
direction was “reddish-green-ness”, however there is no 
human perception of “reddish green”.[1] 

C. Finding a Metric Distance 
In terms of feature extraction and feature measurement, 

determining the relative importance between features is 
termed “finding a metric distance”.[2]  This relative scaling 
between the features is used to predict how important a 
difference between data points is in that space. In terms of 
color, the importance is application dependent. In 
dermatology, a slight change in skin redness could indicate 
infection. When trying to tell if a strawberry is ripe, a much 
larger change in redness is required. The metric for the space, 
the relative importance of features, depends on the application. 

II. NON-RECTILINEAR SPACES 

A. Skewed Axes in Analytic Geometry 
In the 1980’s, when people plotted all data by hand, it was 

sometimes convenient to use skewed axes, axes that were 
neither rectilinear nor orthogonal. Graphical techniques were 
figured out using graph paper that encompassed relative 
relationships. Triangular graph paper was used in chemistry to 



plot relative concentrations. Skewed axes helped automatically 
visualize relationships. 

At present, the idea that axes are orthogonal is our default 
mindset. We assume Cartesian Coordinates.[3]  

Figure 2 shows data plotted on skewed axes. It shows three 
points. The point S is located at (0.0, 0.8), T is at (0.2, 0.6), and 
R is located at (0.0, 0.4). In skewed space, on the skewed axes, 
the distance from S to T is the same as the distance from R to 
T.  However, in reality (on paper), the distance 

! 

RT  is more than 
twice the distance 

! 

ST .  (

! 

ST " 0.20, RT " 0.44). 
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Figure 2 - An example of non-Euclidean, or skewed, axes. 

B. Skewed axes in color 
In 1931, J. Guild and W. D. Wright created standardized 

sensitivity functions that modeled how the human visual 
system [HVS] responded to different frequencies of light. 
[Berns et al.] Their functions modeled how the HVS matches 
luminance levels, and chrominance levels for wavelengths of 
light between 380 nm to 780 nm. These color matching 
functions, 

! 

x ("), y ("), z (")( ) , form the basis vectors for the 
way color is perceived by the HVS. 

The tabulated values for these basis vectors, the color 
matching functions, are publically available over the internet or 
in publications.[4,5] The integral of these basis functions over 
all wavelengths, are called the (X,Y,Z) tristimulus values. 

Equation 1 is given for computing tristimulus values, XYZ. 
The amount of light going into the eye (after reflecting off an 
object) at each wavelength is s(λ), and k is a normalizing 
constant. (Simplified from Berns.[6])  If the illumination 
changes, s(λ), will change, and X, Y and Z will all change. 

 

! 

X = k s(")• x (") d"
"
#

Y = k s(")• y (") d"
"#

Z = k s(")• z (") d"
"
#

   (1) 

A practical rule of Analytical Geometry is to work in the 
positive quadrant whenever possible. The 

! 

x ("), y ("), z (")( )  

basis vectors, the color matching functions, do just that. 
However, they are also skewed. 

C. Computing the skew of the XYZ Tristimulus Axes 
As per (1), the (X,Y,Z) tristimulus values are the weighted 

integral along the basis directions 

! 

(x("), y("), z(")) . 
The steps involved in computing the angles between two 

basis vectors are: take their dot product, divide by the norms 
of the component vectors, and take the inverse-cosine.  Using 
[4] or [5], we can solve for the angles between axes. (Table 1). 
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Table 1 - Angles between the color matching functions used for 

the 1931 Standard Color Observer 

! 

" x (#)y (#)( )   =  76.95°,  

! 

" x (#)z (#)( )   =  83.53° 

! 

" y (#)z (#)( )   =  86.41° 
None of these angles are 90°. The axes that Guild and 

Wright designed were never intended to compute absolute 
differences.[7] Small distances will be approximately linear, 
but the error increases as the distance grows.  Any formula 
based on XYZ tristimulus values incorporates the skew built 
into the 

! 

x ("), y ("), z (")( )  axes. 

D. Numerical Consequence of using Skewed Axes 
Skewed axes are well suited for visualizing some types of 

data. Guild and Wright used them to force the resulting 
tristimulus points to have the desired properties: always 
positive, and to bend the spectrum locus into a convex shape.  

While skewed axes are beneficial for visualization, they are 
generally detrimental to analysis.  When two lines intersect at 
an angle, the numerical precision is inversely proportional to 
the sine of the angle between the two lines. In an extreme case, 
when two lines are nearly parallel, (intersect at a very small 
angle), the intersection point is very sensitive to noise. 

The outcome of the fact that the color matching functions 
are skewed is that numerical accuracy of intersections 
between

! 

x(")  & 

! 

y(") , will be worse than the intersections of 

! 

x(")  & 

! 

z("), which are worse than for intersection of 

! 

y(")  
& 

! 

z(") . Had the angle 76.95° been much farther than 90 
degrees, the errors might have been bad enough to cause better 
color difference functions to be created from the ground up.  As 
it is, the cumulative numeric errors caused by the non-
orthogonality of these basis functions is ≈ 5 percent. 

III. COMPUTING 1/U – THE ERROR OF THE INVERSE 
In Color Science, the chromaticities of points are 

sometimes used.  Chromaticity values are computed: 

 
x = X

X +Y +Z
, y = Y

X +Y +Z
 (3) 

In science, the function 1/u is important. It is used to 
convert electrical resistance to conductivity, in the thin lens 
equation for optics, and here in color science to compute 



chromaticity values. As the u goes down towards zero, the 
inverse goes towards infinity, and it goes towards infinity at a 
faster and faster rate. 

Numerically, division by zero is difficult to ignore because 
computers either complain or give dramatically inaccurate 
results. Yet, it is easy to ignore that when the u gets small, the 
slope gets large. The slope of f(u) = 1/u, is f’(u) = -1/(u2).  If u 
is decreased to a tenth of its value, the function increases to 10 
times its value, and the slope increases to 100 times its value. 

The error in a linear approximation (a Taylor’s series) is 
proportional to the slope [8]. This means that when the value of 
u in f(u) = 1/u drops one order of magnitude, the error increases 
by two orders of magnitude.  

Linear models are commonly used in colorimetry. When 
using the von Kries chromatic adaptation model [9], there is a 
division by the amount of ambient illumination. When 
transforming between color primaries there is another division 
[10]. If the result of the division is close to 1, the magnitude of 
the slope of f’(u) is close to 1, and errors are not amplified. 

In darker regions, noise and measurement errors are 
amplified. Any machine learning algorithm must either weight 
these errors appropriately, or learn to ignore them.  Otherwise, 
a machine learning algorithm would tend to over-fit this 
amplified noise.  

This inverse relationship is used to model white-point 
accommodation.  The accommodation is performed by putting 
the inverse relationship into a matrix and using the matrix to 
perform a linear transform.  However, what goes into the 
creation of the matrix is not linear with the white point.  

Many linear approximations we use are true only in the 
neighborhood of an optimization point. In a feature space that 
is not linear, the approximations we use can change as a 
function of the feature space. This is why data must be 
collected carefully supervised methodology and measurements 
made in the vicinity of the data, instead of having functions that 
are purported to hold for the entire data set. 

IV. USING AN L1 NORM INSTEAD OF AN L2 NORM 
In this section we describe why chromaticity points are 

computed by dividing each tristimulus value by the sum of the 
squares of the three tristimulus values. 

Figure 4 shows two circles centered on the origin. The first 
one, in the dotted line, shows the typical circle, all the points 
are equidistant from the origin. This distance from the origin is 
defined using the common L2 definition of the distance, as per 
the familiar formula (4). 

 

! 

DL2 "L
2 = X 2 +Y 2 + Z 2                (4) 

All of the points on the figure that looks like a diamond are 
also equally distant from the origin, but using the L1 norm.  The 
distant from the origin using the L1 norm is given by (5). 

 

! 

DL1"L
1 = X + Y + Z                     (5) 

In a Euclidean space, with a vector (X,Y,Z), the X 
component would be normalized to a unit vector using (6). 

 

! 

x =
X

X 2 +Y 2 + Z 2
                (6) 
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Figure 3 - Transformation from Tristimulus Values to Chromaticities 
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Figure 4 - Two circles of radius 1, centered on the origin,  

using the L2 norm and the L1 norm. 

This formula for vector normalization only works for 
metric spaces. In non-metric spaces, when normalizing a 
vector, it is common practice to define by the length of the 
vector using the L1 norm, and normalize by that: 

 

! 

x =
X

X + Y + Z
 (7) 

Since Guild and Wright specified that their color matching 
function, 

! 

(x("), y("), z("))  should always be positive, any 
integrals of them will also always be positive. Thus, all values 
of X, Y, and Z will always be positive using real light sources, 
and we can remove the absolute value signs: 



 

! 

x =
X

X +Y +Z
  (8) 

This is the transformation that maps (X,Y,Z) tristimulus 
values to (x,y,z) chromaticity coordinates. It makes no 
presumption about the relative importance of X, Y, or Z. 

In the pattern recognition community when the space is not 
a metric feature space and the relative importance of the 
distances along different features is unknown, but when a 
similarity measure must still be computed, it is common to use 
the L1 norm instead of the usual L2 norm as is done here. 

V. WHY DOES COLOR WORK REGARDLESS? 
In Wright’s 1981 paper, “50 years of the 1931 standard 

observer”,[11] Wright stated that the reason all the math works 
is because light sources and reflecting surfaces tend to be uni-
modal – the distributions have one dominant cluster. Problems 
occur when light sources are bi-modal or tri-modal. (As the 
world moves to using more compact fluorescent and LED 
lights, this will no longer hold.) Wright emphasizes that when 
they developed the XYZ space, it was to be a color matching 
space, it was never intended to be a color difference space. 

The CIELAB color space was developed in 1976 [12] in an 
attempt to be an opponent process color space and so to have a 
more perceptually uniform color space.  While perceptual 
uniformity was the intent, it is not uniform globally. A line 
drawn along constant perceptual hue in the blue region of 
CIELAB does not extend from the center of CIELAB space 
outwards. Furthermore, CIELAB is computed from XYZ 
intermediate computations, incorporating all of the errors in 
computing XYZ values into CIELAB. 

VI. CONCLUSIONS 
The Computer Vision practitioner should be acutely aware 

that color is not a valid metric distance.  For global 
measurements, color is not a Euclidean distance, and not a 
valid measure for computing metric differences in. 

For pattern recognition, two objects that differ by a certain 
amount of: red, green, and blue are best described as that. The 
leap from color measurements to a distance metric in color 
space requires an understanding of the relative relevance of the 
different color channels, in the region of color space being 
considered, and for the application being developed. 

Over the years the CIE community has come up with 
several formulas to try to model uniform color differences. 
These models all try to associate a formula for human visual 
perceptual differences. Unfortunately they also tend to disagree 
with each other [13].  The CIEΔE1994 and CIEDE2000 
standards are available as difference tools, and are based on 
careful factor analysis.[14,15]  The 1994 version is an older 
standard but has the benefit of computational simplicity.  

The human visual system tries to amplify and notice 
differences in the environment, including differences in color. 
It adapts to the amount of light, the color of the light source and 
the color of the surrounding objects. [16] 

While CIELAB may be a better difference space for object 
discrimination or clustering than RGB [19], it still cannot be 

treated as a metric space because it is derived from the color 
matching functions, which are neither orthogonal nor 
rectilinear. 

More recently, it has been suggested that perhaps color 
should not be treated as a multi-dimensional space at all, but 
instead be considered as separate "appearance scales".  From 
this view, lightness, hue, and chroma are all separate one-
dimensional scales, with no geometric relationship. [17,18] 

Color in Computer Vision should be understood as a 
measurement in a non-metric space.  The relative importance of 
the colors features is application dependent.  
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